whitson

Numerical RTA: Commonly Observed LFP Trends in Bowie Diagnostic Plot

Mohamad Majzoub Dahouk Numerical RTA JIP Knowledge Sharing Session # 1 23 March 2022

Why are we here? To talk Bowie & LFPs

 $LFP = LFP = 4n_f x_f h \sqrt{k}$

Why are we here? To talk Bowie & LFP

10%

whitson

90%

Theory Reminder: "Bowie Workflow"

Step 3. Calculate the ratio between the actual measured oil rates and infinite acting model oil rates: $r = q_{o,actual}/q_{o,IA}$

Reality Reminder: "Bowie Workflow"

Step 3. Calculate the ratio between the actual measured oil rates and infinite acting model oil rates: $r = q_{o,actual}/q_{o,IA}$

Copyright © Whitson AS

Copyright © Whitson AS

What else can affect the LFP plot?

We will study two important ones:

- Initial reservoir pressure
- Dimensionless fracture conductivity (Fcd)

Effect of Initial Reservoir Pressure

Synthetic Well

Higher Reservoir Pressure

Actual Pi = 8000 psia Pi in NRTA = 9000 psia

Model Production > Actual Production

Lower Reservoir Pressure

Actual Pi = 8000 psia Pi in NRTA = 7000 psia

Model Production < Actual Production

Correct Reservoir Pressure

Actual Pi = 8000 psia Pi in NRTA = 8000 psia

Model Production = Actual Production

Effect of Fcd

Lowering Fcd makes the "shooting up" period shorter, but in this case results in a very poor match of the rest of the data

Synthetic Low Fcd Well | Fcd = 5

Synthetic Low Fcd Well | Wrong Fcd = 1000

Run NRTA with Fcd = 1000

whitson

Copyright © Whitson AS

Synthetic Low Fcd Well | Wrong Fcd = 1

Low Fcd Well, using Correct Fcd = 5

Cum LFP vs Instantenous LFP

Cum LFP vs Instantaneous LFP

In theory both should show the same results.

Cum LFP vs Instantaneous LFP

Cum LFP vs Instantaneous LFP

In theory both should show the same results. In practice, cum LFP helps removing "noise".

BUT, cum LFP will be "delayed" due to early-time climbing LFPs → Most important when Cum LFP is still increasing

Concluding Remarks

Concluding Remarks

Early "climbing" LFP behavior expected whenever the production from the model is larger than the actual production.

Concluding Remarks

- Early "climbing" LFP behavior \rightarrow q,model > q,actual
- 1. While the well is producing at decreasing water ratio
- 2. Fcd, model > Fcd, well
- 3. p_i , model > p_i , well

whitson

And finally: Cum LFP not always = Instantaneous LFP